
Prof. Dr. M. Paulraj PhD.,

SRIT

Coimbatore-10

GE6151 COMPUTER PROGRAMMING

LECTURE 8

POINTERS

Pointer is a variable that represents the location of a data item.

Pointers are used to pass information back and forth between a
function and its reference point.

In fact pointers provide a way to return multiple data items from a
function via functional arguments.

Pointers are also closely associated with arrays. They provide an
alternate way to access individual array elements.

POINTER FUNDAMENTALS:
Every data item is stored in the computer memory and it occupies
one or more bytes of contiguous (neighboring, adjscent) memory
cells.

For example a character data occupies one memory location,
integer type data occupies 2 byte of memory location, floating type
data occupies 4 bytes of memory locations

Example 1:

char letter;
letter = ‘A’;

The first statement declares a variable name letter. ie., a computer
memory location is referenced by the name “letter”. In the second
statement a numerical value 65 (ASCII value for character ‘A”) is placed
into the memory cell.

Every memory cell has an unique address. In this example the address is
assumed to be 1188. The address corresponding to the variable letter can
be determined using the address operator & where & is an unary
operator.

1188 65

letter

The address of the variable letter can be determined using the
expression &letter.

The address can be stored to a new variable.
ie., pv = &letter;

The variable pv contains the address of the variable (1188) “letter”.

The new variable is called pointer to “letter” since it points to the
location where letter is stored in memory.

The data stored in the memory cell letter can be accessed either by
calling the name of the variable as “letter” or by accessing the
memory address.

The data item represented by “letter” can be accessed by the
expression *pv, where * is an unary operator , called indirection
operator.

Note: The indirection operator * can operate only on address. Both
“letter”, *(&letter) and *pv represent the same data item ‘A”.

Example 2:
#include<stdio.h>
void main() {
char letter;
/* *ptletter is a pointer variable pointing to a charatcter*/
char *ptletter;
letter = 'A';
printf("The address of the variable letter is %x\n",&letter);
ptletter = &letter;
printf("The address of the variable letter is %x\n",ptletter);
printf("The character stored in the letter is %c\n",letter);
printf("The character stored in the letter is %c\n",*ptletter);
return;
}

Result:
The address of the variable letter is fff8
The address of the variable letter is fff8
The character stored in the letter is A
The character stored in the letter is A

Note: The value pointed by a pointer variable can be used in an
expression.

Example 3:
#include<stdio.h>
void main(void) {
int a,b;
int *pta;
a = 10;
pta = &a;
b = 2 * (*pta + 15);
printf(“The expression value is %d\n”,b);
return;}

Result:
The expression value is 50

Note: The indirect reference operator can appear on the left hand side of
an assignment statement.

Example 4:

#include<stdio.h>
void main(void) {
int num = 5;
int *ptnum;
ptnum = #
printf(“value in num is %d\n”,num);
/* indirection operator is used on the left hand side of an assignment
statement*/
*ptnum = 30;
/* As num and *ptnum referes to the same location the value stored in
num is also 30 */
printf(“value in num is %d\n”,num);
return; }

Result:
value in num is 5
value in num is 30

The following is a simple program to multiply two numbers using pointers.

#include<stdio.h>

void main(void)

{

float x = 12.0;

float y = 24.0;

float *ptrx, *ptry;

float result = 0.0;

float *ptrresult;

ptrx = &x;

ptry = &y;

ptrresult = &result;

*ptrresult = *ptrx * *ptry;

printf("%6.2f * %6.2f = %6.2f\n",*ptrx, *ptry, *ptrresult);

return;

}

The output of the above program is

12.00 * 24.00 = 288.00

How a pointer variable can be declared?
The syntax for declaring a pointer variable is :
datatype *pt_variablename;

Note: There should be a star symbol before the variable name.
Example 5:
int *stumark;
float *weight;
char *str;
%s format %[] format specifier:

The %s format and the square bracket format specifiers are used to read
string of characters.

When a %s format is used in a scanf statement, it will read all the
character from the input buffer till it encounters a blank space.

When a %[] format is used in a scanf statement, it will read all the
characters from the input buffer till it encounters a character that is not
found in the list within the square bracket. When ^ symbol is used as a
first symbol in side the %[]format specifier then it represents compliment
of characters.

Example 6:

char string[40];
scanf(“%s”,string);
input : today is very hot.

Value stored in string is “today”
char string [40];

scanf(“%[1234567890abcdefghijklmnopqrstuvwxyz]” , string);

input: today is very hot
output: today is very hot

scanf(“%[^\n]”,string);

Example 7:

/* Program to read a string and to count the number of vowels */

#include<stdio.h>
void count(char string[], int *vowel,
int *const, int *whitespace);
void main(void)
{
char string[80];
int vowel = 0;
int const = 0;
int whitespace = 0;
printf(“Please enter a string”);
scanf(“%[^\n]”,string);
count(string,&vowel,&const,&whitespace);
printf(“The number of vowels = %d\n”,vowels);
printf(“The number of constants = %d\n”,const);
printf(“The number of whitespace = %d\n”,whitespace);
return;
}

void count(char string[], int *vowel, int *const, int *whitespace)
{
int i = 0;
char c;
while((c=toupper(string[i]) != ‘\0’) {
if(c == ‘A’ || c== ‘E’ || c == ‘I’ || c == ‘O’ || c == ‘U’)

++ *vowel;
else if(c >=’A’ && c<=’Z’)

++ *const;
else if(c == ‘ ‘ || c == ‘\t’)

++ *whitespace;
++ i;
}
return;
}

POINTERS AND ONE-DIMENSIONAL ARRAY
Consider the following assignment statement:
int mark[5] = {50,60,70,80,90};
The above statement assigns the values of array cells as:
Mark[0] = 50; mark[1] = 60; mark[2] = 70;
Mark[3] = 50; mark[4] = 90;

The following diagram shows the way in which the data are stored
contiguously.

50 60 70 80 90

mark[0] mark[1] mark[2] mark[3] mark[4]

(2 bytes) (2 bytes) (2 bytes) (2 bytes) (2 bytes)

1800 1802 1804 1806 1808

*mark *(mark+1) *(mark+2) *(mark+3) *(mark+4)

With reference to the above figure, the address of mark[0] is 1800.

The address of the first array element of mark can be represented as
&mark[0] or simply by “mark” itself. ie., &mark[0] and mark represents
the address 1800.

The address of the second array element can be written as &mark [1] or
(mark + 1) and similarly the address of the fifth element can be written as
&mark [4] or (mark+4).

In general, the address of (i+1)th array element can be written as
&mark[i] 0r (mark+i).

Similarly mark[i] or *(mark+i) represents the value at the (i+1)th location.
mark[1] or *(mark+1) represents the value 60. Either term can be used in
any particular application. The choice depends upon the programmer’s
individual preferences.

Array Element
Address

Sub Notion Pointer Notion

0 &mark[0] mark

1 &mark[1] mark+1

2 &mark[2] mark+2

3 &mark[3] mark+3

4 &mark[4] mark+4

Array Element
Value

Sub Notion Pointer Notion

0 mark[0] *(mark)

1 mark[1] *(mark+1)

2 mark[2] *(mark+2)

3 mark[3] *(mark+3)

4 mark[4] *(mark+4)

Example 8:
#include<stdio.h>
void main(void) {
int i;
int x[5] = {50,60,70,80,90};
for(i = 0;i <5;i++)
printf(“i = %d, address is %x, value is %d\n”,i,&x[i], x[i]);
printf(“\n”);
for(i = 0;i <5;i++)
printf(“i = %d, address is %x, value is %d\n”,i,(x+i), *(x+i));
return;}
0 address is 1800 value is 50
1 address is 1802 value is 60
2 address is 1804 value is 70
3 address is 1806 value is 80
4 address is 1808 value is 90
0 address is 1800 value is 50
1 address is 1802 value is 60
2 address is 1804 value is 70
3 address is 1806 value is 80
4 address is 1808 value is 90

Example 9:
Replace each of the following references to a subscripted variable with a
pointer reference.
a. prices[5] *(prices+5)
b. Celsius[16] *(celsius+16)
c. mile[0] *mile

Example 10:
Replace each of the following referenced using a pointer with a
subscript reference.
a. *(mes+6) = mes[6]
b. *(mark+10) = mark[10]
c. *(rate+30) = rate[30]

Pointer Arithmetic:
Pointer variables, like all variables, contain values. The value stored in
pointer variable is an address. Thus by adding , subtracting numbers to
pointers we can obtain other addresses. Further, the addresses in
pointers can be compared using any of the relational operators (> >=
<= < == !=).

Consider the following assignment statement:

int mark[5] = {50,60,70,80,90};

Once the mark is defined, mark is a pointer variable having the initial
address as 1800.
mark + 2 will yield the address 1804.
Here mark + 2 is 1800 + 2*sizeof(int) = 1804.

50 60 70 80 90

mark[0] mark[1] mark[2] mark[3] mark[4]

(2 bytes) (2 bytes) (2 bytes) (2 bytes) (2 bytes)

1800 1802 1804 1806 1808

*mark *(mark+1) *(mark+2) *(mark+3) *(mark+4)

Note : The address can be incremented or decremented.

Pointer Initialization:

Like all variables pointer variables can be initialized when they are
declared.

Example 13:

int speed;
int *ptspeed = &speed;

PASSING POINTERS TO A FUNCTION:

Pointers can be passed to a function as arguments. This allows the
data items within the calling portion of then program to be accessed
by the function, altered within the function, and then returned to the
calling portion of the program in altered form. This method of
passing values to a function is called pass (call) by
reference/address.

Example 14:
#include<stdio.h>
void modify1(int x, int y);
void modify2(int *px, int *py);
void main(void) {
int x,y;
int *px, *py;
x = 10;
y = 20;
px = &x;
py = &y;
printf(“value of x any y before calling modify1 %d %d\n”,x,y);
modify1(x,y);
printf(“value of x any y after calling modify1 %d %d\n”,x,y);
printf(“value of x any y before calling modify2 %d %d\n”,x,y);
/* Note for modify the values are passed as addresses */
modify2(&x,&y);
printf(“value of x any y after calling modify2 %d %d\n”,x,y);
return;}

void modify1(int x, int y)
{
x = 33;
y = 66;
return;

}
void modify2(int *px, int *py)
{
*px = 33;
*py = 66;
return;

}

value of x any y before calling modify1 10 20
value of x any y after calling modify1 10 20
value of x any y before calling modify2 is 10 20
value of x any y after calling modify2 is 33 66

The following program reads the side of a square and computes it’s perimeter

and area using a function.

#include<stdio.h>

void square(float s, float *a, float *p);

void main(void) {

float side,area,perimeter;

printf("Please enter the side ");

scanf("%f",&side);

square(side,&area,&perimeter);

printf("Side = %6.2f\n",side);

printf("Area = %8.2f\n",area);

printf("Perimeter = %6.2f\n",perimeter);

return; }

void square(float s, float *a, float *p) {

*a = s*s;

*p = 4*s;

return; }

Side = 10.00;

Area = 100.00;

Perimeter = 40.00

Pointer to a pointer

Pointer variables can point to a numeric or character variables, arrays,

structures, or another pointer variable. That is a pointer variable can be

assigned the value of another pointer variable. In this case both the

pointer variables must point to data items of same type.

Consider the following program:

#include<stdio.h>

void main(void)

{

int num = 10;

int *numptr1,**numptr2;

numptr1 = #

numptr2 = &numptr1;

printf("The number is %d\n",num);

printf("The number pointed by numptr1 is %d\n",*numptr1);

printf("The number pointed by numptr2 is %d\n",**numptr2);

return;

}

The output of the above program is

The number is 10

The number pointed by numptr1 is 10

The number pointed by numptr2 is 10

10fff4

fff4fff2

pv

v

Int v = 10;

Int *pv;

pv = &v;

printf(“%d\n”, v); /* This will display 10 */

printf(“%x\n”,&v); /* This will display fff4 */

printf(“%x\”, pv); /* This will display fff4 */

printf(“%x\n”, &pv); /* This will display fff2 */

printf(“%d\n”, *pv); /* This will display 10 */

printf(“%d\n”, *(&v)); /* This will display 10 */

10fff4

fff4fff2

pv1

v

Int v = 10;

Int *pv1;

Int *pv2;

pv1 = &v;

pv2 = &pv1;

fff2fff0

pv2

Pointer to a Pointer

#include<stdio.h>

int main(void) {

int v, *pv1, **pv2;

v = 10;

pv1 = &v;

pv2 = &pv1;

printf("Address of v is %x\n", &v);

printf("Address of pv1 is %x\n",&pv1);

printf("Address of pv2 is %x\n", &pv2);

printf("Value at v is %d\n", v);

printf("Value at v is %d\n", *pv1);

printf("Value at v is %d\n", **pv2);

return 0; }

Address of v is fff4

Address of pv1 is fff2

Address of pv2 is fff0

Value at v is 10

Value at v is 10

Value at v is 10

One Dimensional array and Pointer

int I, *pv;

pv = (int *) malloc(5 * sizeof(int));

1800

1802

1804

1806

1808

18001700

pv

pv represents 1800

pv + 1 represents 1802

pv + 2 represents 1804

pv + 3 represents 1806

pv + 4 represents 1808

*pv = 10;

*(pv+1) = 20;

*(pv+2) = 30;

*(pv+3) = 40;

*(pv+4) = 50

10

20

30

40

50

1800

1802

1804

1806

1808

18001700

pv

Array of pointers

One dimensional array can be represented in terms of a pointer and an

offset. A two dimensional array is a collection of one dimensional arrays.

Hence a two dimensional array can also be represented using pointers.

We can represent a multi-dimensional arrays using

Pointer to a group of array : A pointer is defined to point a group of

contiguous one dimensional arrays.

Array of pointers An array of pointers pointing a contiguous one

dimensional arrays.

Pointer to a Group of arrays

Syntax:

Data_type (*pt_name)[expression 2];

Data type represents the type of data

pt_name represents the name of the pointer

Expression 2 indicates the number of column elements.

The above declaration indicates that pt_name is a pointer variable pointing

to a group of contiguous, one dimensional array consisting of ‘expression

2’ elements. If we want to have more than one array then use malloc to

allocate the contiguous memory locations.

1200

x 1200 1202 1204 1206 1208 1210 1212 1214

1216 1218 1220 1222 1224 1226 1228 1230

1232 1234 1236 1238 1240 1242 1244 1246

Example:

int (*x)[8];

x = (int *) malloc(3*8*sizeof(int));

Array of Pointers

Syntax:

Data_type *pt_name[expression 1];

Data type represents the type of data

pt_name represents the name of the pointer

Expression 1 indicates the number of row elements.

The above declaration indicates that pt_name is a one dimensional array

whose contents are pointer variables pointing to a group of contiguous,

one dimensional arrays.

1200

x 1200 1202 1204 1206 1208 1210 1212 1214

1300 1302 1304 1306 1308 1310 1312 1314

1400 1402 1404 1406 1408 1410 1412 1414

1300

1400

Example:

int *x[3];

int i;

for(i=0;i<3;i++)

x[i] = (int *) malloc(3*8*sizeof(int));

#include<stdio.h>

/* A Two dimensional array is a collection

of one dimensional arrays. A pointer to

a group of arrays can be used to declare

a two or more dimensional arrays. The

general form is (*p)[expression 2] */

int main(void)

{

int i, j, (*p)[3];

p = (int *) malloc(5 * 3 * sizeof(int));

printf("Starting Address ia %x\n",p);

printf("Address of consecutive rows\n");

for(i=0;i<5;i++)

printf("%x\t", p[i]);

printf("\n\n");

for(i=0;i<5;i++)

{

for(j=0;j<3;j++)

printf("%x\t", p[i] + j);

printf("\n");

}

Starting Address ia 818

Address of consecutive rows

818 81e 824 82a 830

818 81a 81c

81e 820 822

824 826 828

82a 82c 82e

830 832 834

0 0 0

0 1 2

0 2 4

0 3 6

0 4 8

0 0 0

0 1 2

0 2 4

0 3 6

0 4 8

for(i=0;i<5;i++)

{

for(j=0;j<3;j++)

printf("%d\t", *(*(p+i)+j));

printf("\n");

}

return 0;

}

for(i=0;i<5;i++)

for(j=0;j<3;j++)

((p+i)+j) = i*j;

printf("\n");

for(i=0;i<5;i++)

{

for(j=0;j<3;j++)

printf("%d\t", *(p[i]+j));

printf("\n");

}

printf("\n");

#include<stdio.h>

#include<conio.h>

/* A Two dimensional array is a

collection of

one dimensional arrays.

An array of pointers can be used to

declare a two or more dimensional

arrays.

The general form is *p[expression 1] */

int main(void)

{

int i, j, *p[5];

for(i=0;i<5;i++)

p[i] = (int *) malloc(3 * sizeof(int));

clrscr();

printf("Address of consecutive rows\n");

for(i=0;i<5;i++)

printf("%x\t", p[i]);

printf("\n\n");

for(i=0;i<5;i++) {

for(j=0;j<3;j++)

printf("%x\t", p[i] + j);

printf("\n"); }

for(i=0;i<5;i++)

for(j=0;j<3;j++)

((p+i)+j) = i*j;

printf("\n");

for(i=0;i<5;i++) {

for(j=0;j<3;j++)

printf("%d\t", *(p[i]+j));

printf("\n"); }

printf("\n");

for(i=0;i<5;i++)

{

for(j=0;j<3;j++)

printf("%d\t", *(*(p+i)+j));

printf("\n");

}

return 0;

}

Address of consecutive rows

5d2 5dc 5e6 5f0 5fa

5d2 5d4 5d6

5dc 5de 5e0

5e6 5e8 5ea

5f0 5f2 5f4

5fa 5fc 5fe

0 0 0

0 1 2

0 2 4

0 3 6

0 4 8

0 0 0

0 1 2

0 2 4

0 3 6

0 4 8

